时 间:2017年6月13日10:00-12:00
地 点:光电国家实验室A101
报 告 人:Prof. Rafael Piestun,美国科罗拉多大学博尔德分校
邀 请 人:黄振立 教授
报告人简介:
拉斐尔• 匹斯顿教授在以色列理工学院获得了电气工程硕士和博士学位 ,1998-2000 年在斯坦福大学做博士后 ,2001 年
至今 , 在科罗拉多大学博尔德分校电气与计算机工程系和物理系开展研究 ,2010 年升任正教授 。 匹斯顿教授是OSA Fellow ,
Optics and Photonics News 期刊编委会成员 ,Applied Optics 期刊副主编 ,NSF-IGERT 项目首席研究员 ,NSF-STROBE 中心共同
首席研究员 。 匹斯顿教授的研究兴趣包括:计算光学成像 、 超分辨成像 、 容积光子器件 、 散射光学和超快 光学 。
Biography:
Prof. Rafael Piestun received MSc. and Ph.D. degrees in Electrical Engineering from the Technion – Israel Institute of
Technology. From 1998 to 2000 he was a researcher at Stanford University. Since 2001 he has been with the Department of
Electrical and Computer Engineering and the Department of Physics at the University of Colorado – Boulder. Professor Piestun is a
fellow of the Optical Society of America, was a Fulbright scholar, an Eshkol fellow, received a Honda Initiation Grant award, a
Minerva award, a Provost Achievement Award, and El-Op and Gutwirth prizes. He served in the editorial committee of Optics and
Photonics News and was associate editor for Applied Optics. He was the Director and Principal Investigator of the NSF-IGERT
program in Computational Optical Sensing and Imaging at the University of Colorado and is co-Principal Investigator of the
STROBE NSF Science and Technology Center. His areas of interest include computational optical imaging, superresolution
microscopy, volumetric photonic devices, scattering optics, and ultrafast optics.
报告摘要:
光学 计算成像旨在通过照明 、 光路 、 探测器以及重建算法等的共同努力来提高成像性能 、 实现新的功能 。 在这个报
告里 , 我将讨论两个值得关注的计算成像例子:超越衍射极限的光学成像和复杂媒介成像 。 第一个例子也称为超分辨成像:
研究者们将保持了一百三十多年的阿贝衍射极限打破 , 为纳米尺度的光学成像带来了前所未有的机会 。 将基于光激活和光
转换蛋白的荧光成像技术和计算光学成像系统相结合 , 可以提供宽场单分子检测能力;而将三维点扩散函数工程和最优重
建算法结合 , 则进一步提高了系统的三维分辨能力 。 第二个例子是关于透过强散射介质的聚焦和成像 , 是近年光学领域的
研究热点 。 通过使用反馈系统和光学调制来实现波前控制 , 可以克服介质传播中的多散射效应 。 特别值得指出的是 , 将相
位控制全息技术跟微机电技术相结合 , 可以实现散射介质状态的高速评估 , 从而能够在动态强散射介质样品上实现聚焦 。
我们最近的研究证明 , 利用光声效应 , 在保证光学分辨率的同时 , 对散射介质后的物体进行非侵入式成像 。 在报告的最后 ,
我将简要介绍科罗拉多大学博尔德分校电气与计算机工程系的研究概况和研究生培养计划 。
Abstract:
Optical computational imaging seeks enhanced performance and new functionality by the joint design of illumination,
optics, detectors, and reconstruction algorithms. Two remarkable examples discussed here enable overcoming the diffraction
limit and imaging through complex media. Abbe’s resolution limit has been overcome after more than 130 years enabling
unprecedented opportunities for optical imaging at the nanoscale. Fluorescence imaging using photoactivatable or
photoswitchable molecules within computational optical systems offers single molecule sensitivity within a wide field of view.
The advent of three-dimensional point spread function engineering associated with optimal reconstruction algorithms provides a
unique approach to further increase resolution in three dimensions. Focusing and imaging through strongly scattering media has
also been accomplished recently in the optical regime. By using a feedback system and optical modulation, the resulting
wavefronts overcome the effects of multiple scattering upon propagation through the medium. In particular, a phase-control
holographic technique helps characterize scattering media at high-speed using micro-electro-mechanical technology, allowing
focusing through a temporally dynamic, strongly scattering sample. Further, our recent investigations demonstrate the possibility
of non-invasively imaging objects through a scattering medium using the photoacoustic effect while keeping the optical
resolution.